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Abstract—Discovering and clustering subspaces in high-
dimensional data is a fundamental problem of machine learning
with a wide range of applications in data mining, computer vision,
and pattern recognition. Earlier methods divided the problem
into two separate stages of finding the similarity matrix and
finding clusters. Similar to some recent works, we integrate
these two steps using a joint optimization approach. We make
the following contributions: (i) we estimate the reliability of
the cluster assignment for each point before assigning a point
to a subspace. We group the data points into two groups of
“certain” and “uncertain”, with the assignment of latter group
delayed until their subspace association certainty improves. (ii)
We demonstrate that delayed association is better suited for
clustering subspaces that have ambiguities, i.e. when subspaces
intersect or data are contaminated with outliers/noise. (iii)
We demonstrate experimentally that such delayed probabilistic
association leads to a more accurate self-representation and final
clusters. The proposed method has higher accuracy both for
points that exclusively lie in one subspace, and those that are
on the intersection of subspaces. (iv) We show that delayed
association leads to huge reduction of computational cost, since
it allows for incremental spectral clustering.

I. INTRODUCTION

The problem of clustering high dimensional data when it

is formed from a union of multiple subspaces is studied in

research areas such as machine learning, computer vision,

and pattern recognition. In a large variety of applications,

data naturally form clusters of low dimensional subspaces. In

video processing, for instance, motion trajectories are usually

represented by high-dimensional vectors. Yet, they can span

low-dimensional linear manifolds [1]. Also, in face/image

classification, under some conditions, images lie on low-

dimensional linear subspaces [2]. Subspace clustering algo-

rithms are designed to discover clusters in a mixture of high-

dimensional vectors drawn from multiple probability distribu-

tions. The idea is that, when a subset of high dimensional

data belongs to a cluster, then the points in the cluster lie in

a low dimensional subspace. Several methods are proposed in

this area based on algebraic [3], iterative [4], statistical [5]

and spectral clustering [6], [7]. Spectral clustering methods

form a similarity matrix that describes the similarity between

data points, in order to cluster them. In these methods, points

in subspaces are self-representative. In other words, when
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subspaces are independent and noiseless, by having sufficient

number of points in each subspace, any point in a subspace

can be represented as a linear combination of other points

in that subspace. Given a matrix X ∈ R
n×N , with columns

drawn from a union of C independent linear subspaces of Rn,

{Sk}
C
k=1 with dimensions {dk ≪ n}Ck=1, any data point xi can

be represented as xi = Xs
k̂
zi, where xi ∈ Sk, Xs

k̂
are all the

data points in Sk except for xi, and zi is a coefficient column

vector. Column zi can be recovered as a sparse solution of

an optimization problem. The optimal solution would include

non-zero coefficients corresponding to the columns of Xî that

are in the same subspace as xi. In a general form, and in the

presence of sparse norm and bounded noise or sparse outlier

entries, the optimization problem can be written as follows

min
Z

(‖Z‖ℓ + ‖E‖ℓ′) S.T. E = X −XZ, zii = 0, (1)

where Z is a coefficient matrix, Zi is its i-th column and zii
are the diagonal elements. E represents a bounded noise or

sparse outliers. In the literature, the different choices of ‖.‖ℓ
and ‖.‖ℓ′ are studied [8], [7]. Using Z, a similarity matrix is

defined as: Z̄ = 1
2 (|Z| + |ZT |). A clustering algorithm such

as normalized cuts [9] can then be applied to the similarity

matrix to find the clusters. The authors of [10], [11] developed

unified iterative frameworks for updating the low-rank matrix

Z using clustering results and subsequently finding the clusters

using this new version of Z. The idea is that both the sparse

similarity matrix and the clusters depend on each other. Thus,

an alternating method can be used in the spectral clustering

step to remove noise from the similarity matrix, resulting in

a more accurate estimator of the similarity matrix. This leads

to more accurate clusters in the spectral clustering step. This

method uses an approach similar to (1) and defines an objective

function as follows:

min
Z,Q

(

λ ‖Z‖1,Q + ‖E‖ℓ′
)

S.T. zii = 0, (2)

where ‖Z‖1,Q depends on the clustering matrix Q ∈

{0, 1}N×C obtained in the previous step. An extended version

of this approach is proposed in [11], where Q includes continu-

ous real values obtained by keeping the eigenvectors associated

with C smallest eigenvalues of the computed Laplacian matrix.

This has the advantage of including continuous real values for

re-weighting the representation matrix in the next iteration.



However, this method has the disadvantage of removing less

noise from the similarity matrix compared to Q ∈ {0, 1}N×C .

In this paper, we introduce a joint optimization approach

that converges to an optimal solution for self-representation

of clusters in high dimensional data. The novelty of our

approach is that we delay the association of a point to a

cluster at a given iteration, when such association is uncertain.

Remaining points are considered certain, and clustered right

away. This helps improve the accuracy of updating the ele-

ments of the similarity matrix Z in the next iteration. At each

iteration, certain points, leading to get a better representation

of subspaces. Also, it allows uncertain points to be drawn

closer to the correct subspace before the final assignments is

made. Two main advantages are: (i) We effectively combine

the advantages of both hard and soft clustering, leading to

more accurate representation of the points in subspaces, and

hence more accurate final results, since certain points are hard-

clustered, whereas for uncertain points continuous values are

used for re-weighting the representation in the next iteration.

(ii) This process lends itself to the possibility of using an

incremental spectral clustering, which in turn leads to a huge

reduction in complexity and computational time.

II. PROPOSED METHOD

In the proposed joint optimization methd, we alternate

between finding the coefficient matrix Z and the final cluster-

ing assignments. Assuming the initial clustering if points are

given, we define assignments of points to C clusters by a soft

clustering matrix Φ ∈ [0, 1]N×C where elements φij represent

the probability of point i belonging to subspace j, so that
∑C

j=1 φij = 1, i = 1, . . . , N. In particular, φij = 1 when

point i is confidently assigned to cluster j, and φij = 0 when

point i is confidently excluded from cluster j. Thus, we can

define the association matrix A as A = ΦΦT . Elements aij of

matrix A ∈ [0, 1]N×N indicate the strength of the connection

between points i and j in the dataset. If Φ were a clustering

matrix with entries of zero or one only, then one would have

aij = 1 if points i and j lie in the same class and aij = 0
otherwise.

The sparse similarity matrix Z̄ indicates the connection

between each point and all other points in the dataset. On the

other hand, the association matrix A represents the relationship

between clustered points. Hence, these two matrices are related

to each other and present similar information about points in

the dataset. The association matrix A can be used to denoise

and sparsify the coefficient matrix Z, while taking into account

the coefficient matrix Z can lead to more accurate recovery of

the association matrix A. The following equation formulates

the connection between Z and the newly introduced matrix A:

min
Z,E,A

(

λ0 ‖Z‖1 +
1

2
‖E‖

2
F + λ1 ‖(1− A) ∗ Z‖

2
F

)

(3)

subject to E = X −XZ, zii = 0, rank(Φ) = C.

where A = ΦΦT , 1N×N is the matrix with all unit elements,

and ∗ is the Hadamard product. The first and second term

in (3), similar to equation (1), enforce the sparsity and small

errors between points and their linear representations, respec-

tively. The last term ‖.‖
2
F in this equation imposes connectivity

between points in the same subspace and removes connectivity

of points in different subspaces. Indeed, since the entries aij
of matrix A represent the probabilities of points i and j being

in the same cluster, the elements 1− aij of matrix 1−A are

smaller and do not force the respective entries zij and zji of

matrix Z to be small.

The proposed method jointly searches for a sparse self-

representation matrix Z that satisfies E = X−XZ and the soft

subspace segmentation matrix Φ that satisfies rank(Φ) = C. In

order to identify the subspace clusters and mitigate/eliminate

noise and outliers from the coefficient matrix Z and the asso-

ciation matrix A, we alternate between finding the association

matrix A and the coefficient matrix Z. For a given matrix A,

the objective function (3) is convex in {Z,E}. Given {Z,E},

we estimate A using spectral clustering. A main novelty of

our approach is in the second step, where given the matrix

{Z,E}, we generate the association matrix A ∈ [0, 1]N×N .

Updating Φ and A: Given the similarity matrix Z̄ and the

error matrix E, our objective is to find the soft segmentation

matrix Φ and the association matrix A. The solution for

determining Φ as the probability of assigning points to C

clusters can be defined as a pairwise data clustering problem

[9], [12]. One can find hard clusters by applying a spectral

clustering algorithm such as normalized cuts. Given the initial

hard clusters obtained from the spectral clustering algorithm,

we need to determine the likelihood of a point xi belonging to

each subspace {Sk}
C
k=1, for the purpose of computing Φ. We

define ‖δsk(z̄i)‖1 as the degree of association of each point

xi with the subspace {Sk}
C
k=1. where z̄i is the ith column

of similarity matrix Z̄ corresponding to point xi, and δsk(z̄i)
is found by keeping all the elements of the vector z̄i that

are associated with subspace Sk, and setting the remaining

elements to zero. A point xi, i = 1, · · · , N, is assumed to be

more likely to be associated with a subspace Sk if it has a

higher degree of association to the subspace Sk defined as:

pik =
‖δsk(z̄i)‖1
‖(z̄i)‖1

k = 1, · · · , C (4)

We build the matrix P ∈ [0, 1]N×C with elements pik being

the probabilities of assigning point xi, i = 1, · · · , N , to the

subspace Sk, k = 1, · · ·C, where
∑

k pik = 1. The soft

subspace segmentation matrix Φ is determined as described

below. For each i, we denote ki = arg max
1≤k≤C

{pik} and divide

points into certain and uncertain using the delayed association

parameter Ω. The soft clustering matrix Φ is determined by

the computed probability matrix P as described below. For

each i, we denote ki = argmax1≤k≤C {pik} and divide points

into certain and uncertain by applying a threshold to the

probability matrix P as follows:

φij =











1, if j = ki and piki
≥ Ω

0, if j 6= ki and piki
≥ Ω

pij , if piki
< Ω

(5)



The delayed association parameter Ω is calculated by find-

ing the average affinity between points of a subspace using

the following equation:

Ω = 1−

∑

i 6=j

Mij

(C − 1)
∑

i=j

Mij
where M = PTP (6)

Note that matrix M ∈ R
C×C demonstrates the affinity

between points in subspaces. The main diagonal of this matrix

shows the correlation between points of a subspace and off-

diagonal entries showing the similarity of points in different

subspaces. Thus, when the similarity matrix Z̄ turns into a

block diagonal matrix, the probabilities pik will be pushed

through zero or one and the defined matrix M turns into the

identity matrix with low affinity between points of different

subspaces and strong connectivity among points of a subspace.

We use matrix M to find the delayed association parameter

Ω in each iteration. Based on the definition of Ω , when

there is a high ambiguity between clustered points, matrix M

turns into a matrix containing all similar entries and Ω ≈ 0.

This allows more points to be grouped as uncertain and give

them the chance to find a better representation before being

assigned to a subspace. On the other hand, when there is a

low affinity between points of different subspaces, M turns

into the identity matrix and Ω ≈ 1, which allows more points

to be grouped as certain.

Given an assignment matrix Φ, we form the association

matrix A ∈ [0, 1]
N×N

which is a symmetric matrix. For

each point xi marked as certain, aij ∈ {0, 1} shows if point

xj is assigned to the same class as xi. For uncertain points

aij ∈ [0, 1] represents the probability of assigning xi and xj

to the same cluster. The rationale behind the method is that,

in the sparse similarity matrix Z̄, each column i includes the

coefficients associated with other points used to represent the

point xi. These coefficients indicate the connection between

a point xi and all other points. When a point is marked as

certain in the association matrix A, we discard coefficients

from other clusters by setting aij = 0, even when the values

are large. By setting aij = 1 for all i, j ∈ Sk, we also improve

the connection between points within the same subspace. For

an uncertain point, however, there is an ambiguity regarding

the correct cluster. Using the definition in formula (5), we

preserve all strong connections, regardless of the cluster to

which it is assigned in the spectral clustering step. We include

all the strongly connected points while updating the coefficient

matrix Z in the next iteration. This approach helps us improve

the connections between points and reduce noise in the next

iteration. This process is summarized in algorithm 1.

Updating Z and E: Given the probability matrix Φ and

association matrix A, we update the coefficient matrix Z and

error matrix E in the next step by solving the optimization

equation (3) with respect to {Z,E}

min
Z,E

(

λ0 ‖Z‖1 +
1

2
‖E‖

2
F + λ1 ‖(1− A) ∗ Z‖

2
F

)

(7)

subject to E = X −XZ, zii = 0

Alternating between updating matrices {Z,E}, and matrices

{Φ,A}, as explained, helps us remove small values in the

sparse coefficient matrix Z and obtain a better pairwise

representation of points with less noise/outliers, and hence a

more accurate clustering result.

Algorithm 1 Finding clustering matrix Φ

Require: Cluster assignment, similarity matrix Z̄(t)

1: Compute matrix P (t) using equation (4)

2: Compute theshold Ω(t) using equation (6)
3: for i ∈ {1, .., N} do

4: ki = argmax1≤k≤C {p
(t)
ik }.

5: if P
(t)
iki

≥ Ω(t) then {Mark i as “certain”}
6: for j ∈ {1, .., C} do
7: if j = ki then

8: φ
(t)
ij = 1

9: else
10: φ

(t)
ij = 0

11: else {Mark i as “uncertain”}

12: φ
(t)
ij = p

(t)
ij ∀j ∈ {1, .., C}

13: return Φ(t)

In the initial step of the proposed method, we set A =
1
N×N . This is equivalent to removing the third term in the

equation (3), which converts it to equation (1). We compute

the coefficient matrix Z and error E using (1). Then, using

spectral clustering [12], we divide the input data X into C

clusters. By defining association degrees (4), we form the

probability matrix P , the soft clustering matrix Φ and the as-

sociation matrix A. After this initial step, we alternate between

optimizing with respect to {Φ,A} and {Z,E}. After updating

the sparse similarity matrix Z̄, we need to find the clusters

in each iteration. Previous methods (e.g. [11]) use normalized

cuts and recompute the solution from scratch, with a time

complexity of O(N3/2) in the best case [13]. Our delayed

association of points allows us to resort to an incremental

spectral clustering [14] at a substantially lower computational

cost, since the computed eigenvectors are updated when there

are changes in the similarity matrix Z̄. The running time of

this clustering approach is close to O(N) when every column

of the coefficient matrix Z is sparse. In our approach, when

certain points do not have any coefficient that connects them

to uncertain points, they do not need to be updated in spectral

clustering. Incremental clustering is applied to uncertain points

and all other points that are connected to uncertain in Z̄. As

a result of updating only uncertain points in the clustering

matrix, the time complexity is drastically reduced. In section

III, we further show that the number of uncertain points,

denoted as κ(Φ(t)), generally decreases, which implies that the

cost of incremental updating itself is reducing at each iteration.

The proposed method is summarized in algorithm 2.

As pointed out earlier, we expect that a delayed probabilistic

association in subspace clustering leads us to a better self-

representation matrix and better clustering assignment. Figure

1 illustrates an example of updates in an association matrix A

over 3 sequential steps. The data is from the Extended Yale

Database B [15] with C = 5 subspaces (subjects). As shown



Algorithm 2 Probabilistic sparse subspace clustering

Require: X ∈ R
n×N

1: Initialization: set A(0) = 1
N×N

2: repeat

3: Update Z(t): min
Z,E

(

λ0 ‖Z‖1 +
1
2
‖E‖2

F
+ λ1 ‖(1− A) ∗ Z‖2

F

)

4: Set Z̄(t) = 1
2

[

Z(t) + (ZT )(t)
]

5: Find clusters by incremental spectral clustering[14] or re-
initialize by spectral clustering. [12]

6: Update Φ(t) using Algorithm 1

7: Set A
(t) = (Φ(t))(Φ(t))T

8: until Φ(t) = Φ(t−1) or κ
(

Φ(t)
)

≥ κ
(

Φ(t−1)
)

or t ≥ tmax

in this figure, the percentage of uncertain points is decreased

from %κ1 = 30% in the first iteration to %κ3 = 1% in the

third iterations. Also, the misclassification errors of subspace

clustering are decreased from 7.19% to 0.1%.

Fig. 1: Updates in A (top) and Z̄ (bottom) over three consec-

utive iterations. Data is from the Yale B Face Dataset with 5

subjects. The misclassification errors are 7.19%, 1.25% and

1.0% in iterations t = {1, 2, 3} respectively.

III. EXPERIMENTAL RESULTS

To evaluate the accuracy of the proposed subspace clustering

method, we used different metrics. The first metric we used

is a direct measure of the misclassification error of sparse

subspace clustering results. This is defined as:

Err =
#MisclassifiedPoints

N
(8)

This is the total number of incorrectly clustered points over

the total number of points in the population. Another metric

used is the subspace sparse recovery error [16]. This metric

computes the error of representing each point in its final cluster

according to the coefficient matrix Z. The columns of zi
determine all the coefficients to self-represent the point xi

using all the other points in the dataset. Using the result of

the clustering algorithm, each column zi gets divided into C

classes δs1(zi), δs2(zi), ..., δsC (zi), where each of the δsk(zi)
are the coefficients of representing xi in cluster k. Assuming

m is the correct cluster for point xi, and that δsm(zi) are the

corresponding coefficients to reconstruct the point, the average

subspace sparse recovery error can be defined as:

SSR = 1−
1

N

N
∑

i=1

‖δsm(Zi)‖1
‖Zi‖1

(9)

In the following sections, we study the accuracy of the

proposed method for both synthetic and real datasets, and

compare the results with state-of-the-art algorithms. In our

experiments, the value of tmax = 10 and λ0

λ1

= 100.

A. Synthetic Data: Subspace Intersection

As pointed out earlier, we expect that a delayed probabilistic

association in subspace clustering is better suited to handle

subspaces with large intersections and overlaps, i.e. those

with a large number of points that belong to more than one

subspace. This is of practical interest, since in most real data

there is either ambiguity due to noise or significant similarity

of points in different clusters, due to nested subspaces. In this

section, we experimentally study this important problem. To

generate our dataset, we used the method described in [16].

We examine the effect of intersection between subspaces when

each subspace {Sj}
C
j=1 has a true dimension of d = 10 in

R
n with an ambient dimension n = 200, and an intersection

dimension of s (i.e. sharing s basis vectors). The first subspace

S1 of dimension d is generated uniformly at random. To

generate each of the remaining subspaces for each subspace

{Sj}
C
j=2, we generated two sets of basis: (i) the intersection

basis S
(1)
j of dimension s where s < d. (ii) the disjoint

basis S
(2)
j with dimension d − s. Then, the basis for each

of the remaining subspaces (Sj , j = 1..C) are formed as

Sj = S
(1)
j ∪ S

(2)
j . We generated three different models by

varying the number of subspaces C from two to four and

samples Nj = 100 points uniformly at random from each

subspace. We generated 20 instances from each of these

models and changed the ratio of the intersection between

subspaces in the range s
d = {40%, .., 90%}.

Clustering Accuracy: In the first experiment, we examined

the convergence of the algorithm, i.e. the clustering mis-

classification versus the number of iterations. We show the

result for 50% and 90% intersections and for two to four

clusters. The average number of iterations t before reaching

the condition in algorithm 2 is t = 5. The complete summary

of average misclassification error over 20 independent trials

is shown in table I. As shown in this table, we compare the

misclassification error of the proposed method with SSC [17]

as a baseline and S3C [11] as the state-of-the-art. The proposed

delayed association method consistently outperforms both the

baseline and the state-of-the-art methods. Additionally, table

II shows a complete summary of average representation errors

(equation (9)) on the same experiment. As seen in this table,

our method computes a sparser matrix Z compared with SSC.

However, in some cases, it may compute a less sparse matrix

Z compared with S3C due to delayed association. When there

is more ambiguity in the clusters, our method keeps more

points in the uncertain group, making the coefficient matrix

Z temporarily less sparse compared with S3C. However, this

helps keep the classification error lower (see Table I). Figure

2 shows the average misclassification error (equation (8))

for 20 independent trials. We compared the results of the

proposed method with SSC [17] and S3C [11]. As illustrated,



the proposed method is more accurate compared with state-

of-the-art algorithms. Graphs in figure 3 illustrate the average

changes in accuracy of subspace clustering by alternately

updating {Z,E} and A. These graphs compare the accuracy

of the proposed algorithm with the approaches in S3C [11]

and in SSC.

Fig. 2: Average % misclassification errors (8) for Prob-SSC,

SSC and S3C methods over 20 independent trials.

Fig. 3: Average %misclassification errors over 10 iterations.

Results are shown for Prob-SSC, SSC and S3C.

To show that the percentage of uncertain points (κ(Φ))
decreases and leads to converge the proposed method, we re-

moved constraints of Φ(t) = Φ(t−1) or κ
(

Φ(t)
)

≥ κ
(

Φ(t−1)
)

in algorithm 2 and repeated the process for 20 iterations.

Figure 4 shows the average percentage of uncertain points de-

creases monotonically. The experiment is on 50% intersection

between subspaces over 20 independent trials.

Fig. 4: Average decrease of %uncertain points.

B. Real Data: Face Clustering

Face classification is one of the many applications of

subspace clustering. Face image classification techniques try to

cluster images of the same subject under varying illumination

or imaging conditions in one group. Study in [2] shows that

a set of images of an object under varying illumination lies

in a low-dimensional linear subspace of the image space of

up to nine dimensions. Thus, face images in this condition

can be clustered using subspace clustering techniques. The

Extended Yale B Database [15] is a facial dataset widely used

in subspace clustering literature [8], [18] and contains 2, 414
frontal face images of 38 human subjects taken under ap-

proximately 64 different illumination conditions. This dataset

is considered as a challenging one for clustering techniques

due to its extreme lighting variations. In this experiment,

we used the proposed algorithm to study the improvement

in accuracy of face clusters compared to previous methods.

We used subsets of C = {2, 3, 5, 8, 10} different subjects

(subspaces) from the dataset. Each subject includes 64 images

(Nj = 64). Each downsampled image has a dimension of

48×42 that is vectorized to a 2016-dimensional vector. These

38 subjects are divided in 4 groups of 1-10, 11-20, 21-30 and

31-38 [11]. Similar to the reported results in [11], we kept

the original size of the image vectors (2016) and reported the

result on the whole dataset. We examined the accuracy of the

proposed subspace clustering algorithm on this dataset. Table

III shows the clustering error percentages for the proposed

algorithm. We compared the error of our proposed method

with S3C [11], SSC[17], and LRR [6].We cite the reported

results in [19], [7] and [11] in this table. As it is shown in

this table, our method outperforms all other state-of-the-art

algorithms.

(a)

(b)

Fig. 5: Real data. (a): Faces from the Extended Yale Dataset

B. (b): Images from the Hopkins 155 dataset.

C. Real Data: Motion Segmentation

Motion segmentation of trajectory data has been widely

studied in computer vision applications such as reconstruct-

ing dynamic scenes [1]. In dynamic scenes with multiple

moving rigid objects, the trajectories can be represented by

high-dimensional vectors. Yet, they can span low-dimensional

linear manifolds [1]. It is shown that, in an affine subspace,

trajectories of a single motion in an ambient dimension R
2F ,

where F is the number of frames, lies in a low-dimensional

linear subspace of up to four dimensions. Thus, subspace

clustering algorithms can be used to cluster the trajectories of

different motions in separate subspaces. In this part, we used

Hopkins 155 motion segmentation dataset [20] to examine

the proposed subspace clustering method. We compared the

misclassification errors of our proposed method on this dataset

with LRR[6], SSC [17], and S3C [11]. Table IV shows the

clustering error percentages for these methods. We cite the

reported results in [11] in this table. As shown, our proposed

method outperforms all other state-of-the-art algorithms.

IV. CONCLUSION

We introduced a new subspace clustering method that

outperforms state-of-the-art methods reported recently in the

literature. This boost in accuracy is because we replace the

usual clustering matrix Q with an association matrix A that



TABLE I: Intersection %misclassification as a function of subspaces intersection and number of subspaces.
#Subspace 2 3 4
%intersect 50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

SSC 0.10 0.50 2.68 8.0 33.8 0.13 1.20 3.98 13.3 42.0 0.31 1.30 6.19 18.4 50.9

S3C 0.03 0.40 2.38 7.63 30.9 0.15 1.10 3.98 13.3 42.0 0.30 1.23 5.94 18.1 50.5

Prob SSC 0.03 0.25 1.58 7.25 24.9 0.08 0.65 3.23 11.7 34.8 0.11 0.66 4.41 14.4 42.4

TABLE II: Intersection %SSR error as a function of subspaces intersection and number of subspaces.
#Subspace 2 3 4
%intersect 50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

SSC 8.03 19.3 22.6 28.6 34.8 11.8 17.7 28.3 36.0 53.4 12.5 25.9 28.3 48.6 60.4

S3C 3.64 13.3 15.9 21.1 37.8 5.17 8.68 21.8 27.3 47.9 4.93 13.2 16.1 42.0 57.4

Prob SSC 3.04 10.5 17.7 25.3 35.7 3.93 8.90 22.8 32.2 46.3 5.81 19.2 19.5 43.6 56.6

TABLE III: Average %misclassification errors on Extended Yale B Dataset [15].
# Subjects 2 3 5 8 10

%Err Average Median Average Median Average Median Average Median Average Median

LRR 6.74 7.03 9.30 9.90 13.94 14.38 25.61 24.80 29.53 30.00
LRSC 3.15 2.34 4.71 4.17 13.06 8.44 26.83 28.71 35.89 34.84

LatLRR 2.54 0.78 4.21 2.60 6.90 5.63 14.34 10.06 22.92 23.59
SSC 1.87 0.00 3.35 0.78 4.32 2.81 5.99 4.49 7.29 5.47

S3C 1.27 0.00 2.71 0.52 3.41 1.25 4.15 2.93 5.16 4.22

Soft S3C 0.76 0.00 0.82 0.52 1.32 1.25 2.14 1.95 2.40 2.50

Prob SSC 0.48 0.00 0.77 0.52 1.23 0.93 2.08 1.26 2.14 2.19

TABLE IV: Average %misclassification on Hopkins dataset.
2 Motions 3 Motions Total

%Err Avg Median Avg Median Avg Median

LRR 3.76 0.00 9.92 1.42 5.15 0.00

LRSC 2.57 0.00 6.62 1.76 3.47 0.09
SSC 1.95 0.00 4.94 0.89 2.63 0.00

S3C 1.73 0.00 5.50 0.81 2.58 0.00

Soft-S3C 1.65 0.00 4.27 0.61 2.24 0.00

Prob SSC 1.57 0.00 3.60 0.58 2.13 0.00

allows us to track the assignment of points in the same clusters,

and hence delay hard assignments until later iterations, when

more confidence is gained. This is possible because, at each

iteration, the method splits the points into two groups of cer-

tain and uncertain, allowing the latter group’s association to be

delayed until later iterations when the association probabilities

become higher. A direct advantage of this delayed association

is that the method performs better when subspaces are highly

overlapping (i.e. high intersection of bases). The results on

both synthetic and real data confirm these advantages.
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